Practice set 2.1

Q. 1. Classify the decimal form of the given rational numbers into terminating and non-terminating recurring type

i.
$$\frac{13}{5}$$
 ii. $\frac{2}{11}$
iii. $\frac{29}{16}$ iv. $\frac{17}{125}$
v. $\frac{11}{6}$

Answer : i.

$$\frac{13}{5} = 2.6$$

 \because The division is exact

 \therefore it is a terminating decimal.

ii.

 $\frac{2}{11} = 0.181818....$

 \therefore The division never ends and the digits '18' is repeated endlessly

 \therefore it is a non-terminating recurring type decimal.

iii.

 $\frac{29}{16} = 1.8125$

 \because The division is exact

 \therefore it is a terminating decimal.

iv.

$$\frac{17}{125} = 0.136$$

: The division is exact

 \therefore it is a terminating decimal.

v.

 $\frac{11}{6} = 1.83333 \dots$

 \because The division never ends and the digit '3' is repeated endlessly

 \therefore it is a non-terminating recurring type decimal.

Q. 2. Write the following rational numbers in decimal form.

i.
$$\frac{127}{200}$$
 ii. $\frac{25}{99}$
iii. $\frac{23}{7}$ iv. $\frac{4}{5}$
v. $\frac{17}{8}$

Answer :

i. $\frac{127}{200} = 0.635$

ii.
$$\frac{25}{99} = 0.252525 \dots$$

iii.
$$\frac{23}{7} = 3.285714285714285714...$$

iv.
$$\frac{4}{5} = 0.8$$

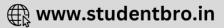
V.
$$\frac{17}{8} = 2.125$$

Q. 3. Write the following rational numbers in form.

Answer :

i. 0. Ġ

Let $x = 0.\dot{6} = 0.6666...$ ⇒ 10x = 6.66666..... Now, 10x - x = 6.66 - 0.6666⇒9x = 6 $\Rightarrow x = \frac{6}{9}$ $\Rightarrow 0.\dot{6} = \frac{6}{9} = \frac{2}{3}$ ii. 0. 37 Let $x = 0.\overline{37} = 0.3737...$ ⇒ 100x = 37.3737..... Now, 100x - x = 37.3737 - 0.3737 \Rightarrow 99x = 37



$$\Rightarrow x = \frac{37}{99}$$
$$\Rightarrow 0.\overline{37} = \frac{37}{99}$$
$$iii. 3.\overline{17}$$

Let $x = 3.\overline{17} = 3.1717...$ ⇒ 100x = 317.1717..... Now, 100x - x = 317.1717 - 3.1717 \Rightarrow 99x = 314 $\Rightarrow x = \frac{314}{99}$ $\Rightarrow 3.\overline{17} = \frac{314}{99}$ iv. 15. 89 Let $x = 15.\overline{89} = 15.8989...$ ⇒ 100x = 1589.8989..... Now, 100x - x = 1589.8989 - 15.8989 \Rightarrow 99x = 1574 $\Rightarrow x = \frac{1574}{99}$

$$\Rightarrow 15.\overline{89} = \frac{1574}{99}$$

$$v. 2.\overline{514}$$
Let $x = 2.\overline{514} = 2.514514...$

$$\Rightarrow 1000x = 2514.514514...$$
Now,
$$1000x - x = 2514.514514 - 2.514514$$

$$\Rightarrow 999x = 2512$$

$$\Rightarrow x = \frac{2512}{999}$$

$$\Rightarrow 2.\overline{514} = \frac{2512}{999}$$

Practice set 2.1

Q. 1. Show that is $4\sqrt{2}$ an irrational number.

Answer : Let us assume that $4\sqrt{2}$ is a rational number

$$\therefore 4\sqrt{2} = \frac{a}{b}$$

where, b≠0 and a, b are integers

$$\Rightarrow \sqrt{2} = \frac{a}{4b}$$

- \because a, b are integers \therefore 4b is also integer
- $\Rightarrow \frac{a}{4b}$ is rational which cannot be possible
- $\frac{a}{4b} = \sqrt{2}$ which is an irrational number

: it is contradicting our assumption

: the assumption was wrong

Hence, $4\sqrt{2}$ is an irrational number

Q. 2. Prove that $3 + \sqrt{5}$ is an irrational number.

Answer : Let us assume that $3 + \sqrt{5}$ is a rational number

$$\therefore 3 + \sqrt{5} = \frac{a}{b}$$

where, b≠0 and a, b are integers

b

$$\Rightarrow \sqrt{5} = \frac{a}{b} - 3$$
$$\Rightarrow \sqrt{5} = \frac{a - 3b}{b}$$

 \therefore a, b are integers \therefore a – 3b is also integer

 $\Rightarrow \frac{a-3b}{b}$ is rational which cannot be possible

 $\frac{a-3b}{b} = \sqrt{5}$ which is an irrational number

: it is contradicting our assumption : the assumption was wrong

Hence, $3 + \sqrt{5}$ is an irrational number

Q. 3. Represent the numbers $\sqrt{5}$ and $\sqrt{10}$ on a number line.

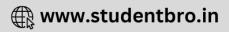
Answer: By Pythagoras theorem,

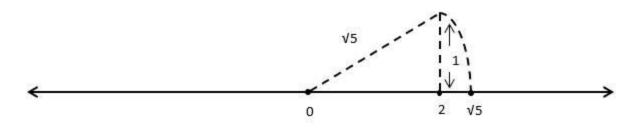
$$(\sqrt{5})^2 = 2^2 + 1^2$$

$$\Rightarrow (\sqrt{5})^2 = 4 + 1$$

$$\Rightarrow \sqrt{5} = \sqrt{4+1}$$

First mark 0 and 2 on the number line. Then, draw a perpendicular of 1 unit from 2. And Join the top of perpendicular and 0. This line would be equal to $\sqrt{5}$. Now measure the line with compass and marc an arc on the number line with the same measurement. This point is $\sqrt{5}$.





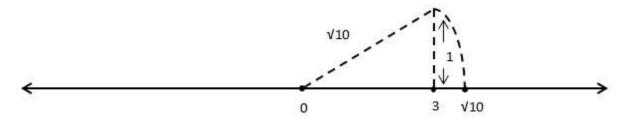
Also,

By Pythagoras theorem,

- $(\sqrt{10})^2 = 3^2 + 1^2$
- $\Rightarrow (\sqrt{10})^2 = 9 + 1$

$$\Rightarrow \sqrt{10} = \sqrt{9+1}$$

First mark 0 and 3 on the number line. Then, draw a perpendicular of 1 unit from 3. And Join the top of perpendicular and 0. This line would be equal to $\sqrt{10}$. Now measure the line with compass and marc an arc on the number line with the same measurement. This point is $\sqrt{10}$.



0.3 and -0.5

Answer: 0.3 and -0.5

To find a rational number x between two rational numbers $\overline{\mathbf{b}}$ and $\overline{\mathbf{d}}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between

$$0.3 = \frac{3}{10}$$
 and $-0.5 = \frac{-5}{10}$

$$x = \frac{1}{2} \left(\frac{3}{10} + \frac{-5}{10} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \left(\frac{3-5}{10} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \frac{-2}{10}$$
$$\Rightarrow x = \frac{-1}{10} = -0.1$$

Now if we find a rational number between $\frac{3}{10}$ and $\frac{-1}{10}$ it will also be between 0.3 and -0.5 since $\frac{-1}{10}$ lies between 0.3 and -0.5.

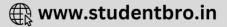
Therefore, to find rational number y (let) between $\frac{3}{10}$ and $\frac{-1}{10}$

$$y = \frac{1}{2} \left(\frac{3}{10} + \frac{-1}{10} \right)$$
$$\Rightarrow y = \frac{1}{2} \left(\frac{3-1}{10} \right)$$
$$\Rightarrow y = \frac{1}{2} \times \frac{2}{10}$$
$$\Rightarrow y = \frac{1}{2} \times \frac{2}{10}$$

Now if we find a rational number between $\frac{-1}{10}$ and $\frac{1}{10}$ it will also be between 0.3 and -0.5 since $\frac{1}{10}$ lies between 0.3 and -0.5.

Therefore, to find rational number z (let) between $\frac{1}{10}$ and $\frac{-5}{10}$.

 $z = \frac{1}{2} \left(\frac{1}{10} + \frac{-5}{10} \right)$



$$\Rightarrow z = \frac{1}{2} \left(\frac{1-5}{10} \right)$$
$$\Rightarrow z = \frac{1}{2} \times \frac{-4}{10}$$
$$\Rightarrow z = \frac{-2}{10} = -0.2$$

Hence the numbers are -0.2, -0.1 and 0.1

Q. 4 B. Write any three rational numbers between the two numbers given below.

-2.3 and -2.33

To find a rational number x between two rational numbers $\frac{\underline{a}}{b}$ and $\frac{\underline{c}}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between $-2.3 = \frac{-23}{10}$ and $-2.33 = \frac{-233}{100}$

$$x = \frac{1}{2} \left(\frac{-23}{10} + \frac{-233}{100} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \left(\frac{-230 - 233}{100} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \frac{-463}{100}$$
$$\Rightarrow x = -2.315$$

Now if we find a rational number between $-2.315 = \frac{-2315}{1000}$ and $-2.3 = \frac{-23}{10}$ it will also be between -2.3 and -2.33 since -2.315 lies between -2.3 and -2.33

Therefore, to find rational number y (let) between $\frac{-2315}{1000}$ and $\frac{-23}{10}$

$$y = \frac{1}{2} \left(\frac{-2315}{1000} + \frac{-23}{10} \right)$$

$$\Rightarrow y = \frac{1}{2} \left(\frac{-2315 - 2300}{1000} \right)$$

$$\Rightarrow y = \frac{1}{2} \times \frac{-4615}{1000}$$

$$\Rightarrow y = -2.3075$$

Now if we find a rational number between $-2.315 = \frac{-2315}{1000}$ and $-2.33 = \frac{-233}{100}$ it will also be between -2.3 and -2.33 since -2.315 lies between -2.3 and -2.33

-2315

-233

🕀 www.studentbro.in

Therefore, to find rational number z (let) between 1000 and 100

$$z = \frac{1}{2} \left(\frac{-2315}{1000} + \frac{-233}{100} \right)$$

$$\Rightarrow z = \frac{1}{2} \left(\frac{-2315 - 2330}{1000} \right)$$

$$\Rightarrow z = \frac{1}{2} \times \frac{-4645}{1000}$$

$$\Rightarrow z = -2.3225$$

Hence the numbers are -2.3225, -2.3075 and -2.315

Q. 4 C. Write any three rational numbers between the two numbers given below.

5.2 and 5.3

Answer : 5.2 and 5.3

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{a}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between $5.2 = \frac{52}{10} = \frac{53}{10} = \frac{53}{10}$

$$x = \frac{1}{2} \left(\frac{52}{10} + \frac{53}{10} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \left(\frac{52 + 53}{10} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \frac{105}{10}$$
$$\Rightarrow x = 5.25$$

Now if we find a rational number between $5.25 = \frac{525}{100}$ and $5.2 = \frac{52}{10}$ it will also be between 5.2 and 5.3 since 5.25 lies between 5.2 and 5.3

Therefore, to find rational number y (let) between $5.25 = \frac{525}{100}$ and $5.2 = \frac{52}{10}$

$$y = \frac{1}{2} \left(\frac{525}{100} + \frac{52}{10} \right)$$
$$\Rightarrow y = \frac{1}{2} \left(\frac{525 + 520}{100} \right)$$
$$\Rightarrow y = \frac{1}{2} \times \frac{1045}{100}$$
$$\Rightarrow y = 5.225$$

Now if we find a rational number between $5.25 = \frac{525}{100}$ and $5.3 = \frac{53}{10}$ it will also be between 5.2 and 5.3 since 5.25 lies between 5.2 and 5.3

Therefore, to find rational number z (let) between $5.25 = \frac{525}{100}$ and $5.3 = \frac{53}{10}$

$$z = \frac{1}{2} \left(\frac{525}{100} + \frac{53}{10} \right)$$
$$\Rightarrow z = \frac{1}{2} \left(\frac{525 + 530}{100} \right)$$
$$\Rightarrow z = \frac{1}{2} \times \frac{1055}{100}$$

Get More Learning Materials Here :

🕀 www.studentbro.in

⇒ z = 5.275

Hence the numbers are 5.225, 5.25 and 5.275

Q. 4 D. Write any three rational numbers between the two numbers given below.

-4.5 and 4.6

Answer : -4.5 and 4.6

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between $-4.5 = \frac{-45}{10}$ and $4.6 = \frac{46}{10}$

$$x = \frac{1}{2} \left(\frac{-45}{10} + \frac{46}{10} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \left(\frac{-45 + 46}{10} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \frac{1}{10}$$
$$\Rightarrow x = 0.05$$

Now if we find a rational number between $-4.5 = \frac{-45}{10}$ and $0.05 = \frac{5}{100}$ it will also be between -4.5 and 4.6 since 0.05 lies between -4.5 and 4.6

Therefore, to find rational number y (let) between $-4.5 = \frac{-45}{10}$ and $0.05 = \frac{5}{100}$

$$y = \frac{1}{2} \left(\frac{-45}{10} + \frac{5}{100} \right)$$
$$\Rightarrow y = \frac{1}{2} \left(\frac{-450 + 5}{100} \right)$$
$$\Rightarrow y = \frac{1}{2} \times \frac{-445}{100}$$

⇒ y = -2.225

Now if we find a rational number between $4.6 = \frac{46}{10}$ and $0.05 = \frac{5}{100}$ it will also be between -4.5 and 4.6 since 0.05 lies between -4.5 and 4.6

Therefore, to find rational number z (let) between $4.6 = \frac{46}{10} \text{ and } 0.05 = \frac{5}{100}$

$$z = \frac{1}{2} \left(\frac{46}{10} + \frac{5}{100} \right)$$
$$\Rightarrow z = \frac{1}{2} \left(\frac{460 + 5}{100} \right)$$
$$\Rightarrow z = \frac{1}{2} \times \frac{465}{100}$$
$$\Rightarrow z = 2.325$$

Hence the numbers are -2.225, 0.05and 2.325

Practice set 2.3

Q. 1. State the order of the surds given below.

Answer : In $\sqrt[n]{a}$, n is called the order of the surd.

Therefore,

i. ∛7

In this, the order of surd is 3.

ii. ∛12

In this, the order of surd is 5.

iii. **∜10**

In this, the order of surd is 4.

In this, the order of surd is 2.

v. <mark>∛18</mark>

In this, the order of surd is 3

Q. 2. State which of the following are surds. Justify.

i.
$$\sqrt[3]{51}$$
 ii. $\sqrt[4]{51}$
iii. $\sqrt[3]{81}$ iv. $\sqrt{256}$
v. $\sqrt[3]{64}$ vi. $\sqrt{\frac{22}{7}}$

Answer : Surds are numbers left in root form ($\sqrt{}$) to express its exact value. It has an infinite number of non-recurring decimals. Therefore, surds are irrational numbers.

Therefore,

<mark>∛</mark>51

It is a surd \because it cannot be expressed as a rational number.

ii. ∜51

It is a surd \because it cannot be expressed as a rational number.

iii.
$$\sqrt[5]{81} = \sqrt[5]{34}$$

It is a surd \because it cannot be expressed as a rational number.

iv.
$$\sqrt{256} = \sqrt{162} = 16$$

It is not a surd \because it is a rational number.

v.
$$\sqrt[3]{64} = \sqrt[3]{4^3} = 4$$

It is not a surd \because it is a rational number.

vi. $\sqrt{\frac{22}{7}}$

It is a surd :: it cannot be expressed as a rational number.

Q. 3. Classify the given pair of surds into like surds and unlike surds.

- i. √52, 5√13
- ii. √68, 5√3
- iii. 4√18, 7√2
- iv. 19√12, 6√3

v. 5√22, 7√33

vi. 5√5, √75

Answer : Two or more surds are said to be similar or like surds if they have the same surd-factor.

And,

Two or more surds are said to be dissimilar or unlike when they are not similar.

Therefore,

i. √52, 5√13

$$\sqrt{52} = \sqrt{(2 \times 2 \times 13)} = 2\sqrt{13}$$

5√13

 \therefore both surds have same surd-factor i.e., $\sqrt{13}$.

 \therefore they are like surds.

ii. √68, 5√3

$$\sqrt{68} = \sqrt{(2 \times 2 \times 17)} = 2\sqrt{17}$$

5√3

 \because both surds have different surd-factors $\sqrt{17}$ and $\sqrt{3}.$

 \therefore they are unlike surds.

iii. $4\sqrt{18}$, $7\sqrt{2}$

$$4\sqrt{18} = 4\sqrt{(2\times3\times3)} = 4\times3\sqrt{2} = 12\sqrt{2}$$

 \because both surds have same surd-factor i.e., $\sqrt{2}.$

 \therefore they are like surds.

iv. 19√12, 6√3

 $19\sqrt{12} = 19\sqrt{(2 \times 2 \times 3)} = 19 \times 2\sqrt{3} = 38\sqrt{3}$

6√3

 \therefore both surds have same surd-factor i.e., $\sqrt{3}$.

 \therefore they are like surds.

v. 5√22, 7√33

 \because both surds have different surd-factors $\sqrt{22}$ and $\sqrt{33}.$

 \therefore they are unlike surds.

vi. 5√5, √75

5√5

 $\sqrt{75} = \sqrt{(5 \times 5 \times 3)} = 5\sqrt{3}$

 $\cdot\cdot$ both surds have different surd-factors $\sqrt{5}$ and $\sqrt{3}.$

 \therefore they are unlike surds.

Q. 4. Simplify the following surds.

i. $\sqrt{27}$ ii. $\sqrt{50}$ iii. $\sqrt{250}$ iv. $\sqrt{112}$ v. $\sqrt{168}$ Answer : i. $\sqrt{27} = \sqrt{3 \times 3 \times 3}$ $\Rightarrow \sqrt{27} = \sqrt{3 \times (3)^2}$ $\Rightarrow \sqrt{27} = 3\sqrt{3}$ ii. $\sqrt{50} = \sqrt{2 \times 5 \times 5}$ $\Rightarrow \sqrt{50} = \sqrt{2 \times (5)^2}$ $\Rightarrow \sqrt{50} = 5\sqrt{2}$ iii. $\sqrt{250} = \sqrt{2 \times 5 \times 5 \times 5}$

$$\Rightarrow \sqrt{250} = \sqrt{10 \times (5)^2}$$

$$\Rightarrow \sqrt{250} = 5\sqrt{10}$$
iv. $\sqrt{112} = \sqrt{2 \times 2 \times 2 \times 2 \times 7}$

$$\Rightarrow \sqrt{112} = \sqrt{(2)^2 \times (2)^2 \times 7}$$

$$\Rightarrow \sqrt{112} = 2 \times 2 \times \sqrt{7}$$

$$\Rightarrow \sqrt{112} = 4\sqrt{7}$$
v. $\sqrt{168} = \sqrt{2 \times 2 \times 2 \times 3 \times 7}$

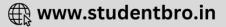
$$\Rightarrow \sqrt{112} = \sqrt{(2)^2 \times 2 \times 3 \times 7}$$

$$\Rightarrow \sqrt{112} = 2 \times \sqrt{42}$$

$$\Rightarrow \sqrt{112} = 2\sqrt{42}$$

Q. 5. Compare the following pair of surds.

i. $7\sqrt{2}$, $5\sqrt{3}$ ii. $\sqrt{247}$, $\sqrt{274}$ iii. $2\sqrt{7}$, $\sqrt{28}$ iv. $5\sqrt{5}$, $7\sqrt{2}$ v. $4\sqrt{42}$, $9\sqrt{2}$ vi. $5\sqrt{3}$, 9vii. 7, $2\sqrt{5}$ Answer : i. $7\sqrt{2}$, $5\sqrt{3}$ $(7\sqrt{2})^2 = 7 \times 7 \times \sqrt{2} \times \sqrt{2}$ $\Rightarrow (7\sqrt{2})^2 = 49 \times 2$ $\Rightarrow (7\sqrt{2})^2 = 98$ And $(5\sqrt{3})^2 = 5 \times 5 \times \sqrt{3} \times \sqrt{3}$ $\Rightarrow (5\sqrt{3})^2 = 25 \times 3$ $\Rightarrow (5\sqrt{3})^2 = 75$



Clearly,

98 > 75

 $\therefore 7\sqrt{2} > 5\sqrt{3}$

ii. √247, √274

 $(\sqrt{247})^2 = 247$

And

 $(\sqrt{274})^2 = 274$

Clearly,

247 < 274

∴ √247 < √274

iii. 2√7, √28

 $(2\sqrt{7})^2 = 2 \times 2 \times \sqrt{7} \times \sqrt{7}$

 $\Rightarrow (2\sqrt{7})^2 = 4 \times 7$

 $\Rightarrow (2\sqrt{7})^2 = 28$

And

 $(\sqrt{28})^2 = 28$

Clearly,

28 = 28

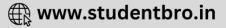
 $\therefore 2\sqrt{7} = \sqrt{28}$

iv. 5√5, 7√2

 $(5\sqrt{5})^2 = 5 \times 5 \times \sqrt{5} \times \sqrt{5}$

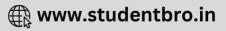
 $\Rightarrow (5\sqrt{5})^2 = 25 \times 5$

 $\Rightarrow (5\sqrt{5})^2 = 125$



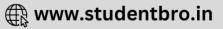
And $(7\sqrt{2})^2 = 7 \times 7 \times \sqrt{2} \times \sqrt{2}$ $\Rightarrow (7\sqrt{2})^2 = 49 \times 2$ $\Rightarrow (7\sqrt{2})^2 = 98$ Clearly, 125 = 98∴ 5√5= 7√2 **v.** 4√42, 9√2 $(4\sqrt{42})^2 = 4 \times 4 \times \sqrt{42} \times \sqrt{42}$ $\Rightarrow (4\sqrt{42})^2 = 16 \times 42$ $\Rightarrow (4\sqrt{42})^2 = 672$ And $(9\sqrt{2})^2 = 9 \times 9 \times \sqrt{2} \times \sqrt{2}$ $\Rightarrow (9\sqrt{2})^2 = 81 \times 2$ $\Rightarrow (9\sqrt{2})^2 = 162$ Clearly, 672 > 162 $\therefore 4\sqrt{42} > 9\sqrt{2}$ **vi.** 5√3, 9 $(5\sqrt{3})^2 = 5 \times 5 \times \sqrt{3} \times \sqrt{3}$ $\Rightarrow (5\sqrt{3})^2 = 25 \times 3$ $\Rightarrow (5\sqrt{3})^2 = 75$

And



 $(9)^2 = 9 \times 9$ \Rightarrow (9)² = 81 Clearly, 75 < 81 ∴ 5√3 < 9 **vii.** 7, 2√5 $(2\sqrt{5})^2 = 2 \times 2 \times \sqrt{5} \times \sqrt{5}$ $\Rightarrow (2\sqrt{5})^2 = 4 \times 5$ $\Rightarrow (2\sqrt{5})^2 = 20$ And $(7)^2 = 7 \times 7$ \Rightarrow (7)² = 49 Clearly, 49 > 20 $\therefore 7 > 2\sqrt{5}$ Q. 6. Simplify. i. 5√3 + 8√3 ii. 9√5 – 4√5 + √125 iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ **Answer :** i. $5\sqrt{3} + 8\sqrt{3}$

 $5\sqrt{3} + 8\sqrt{3} = (5+8)\sqrt{3}$ $\Rightarrow 5\sqrt{3} + 8\sqrt{3} = 13\sqrt{3}$



$$\begin{aligned} &\text{ii. } 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} \\ &9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 9\sqrt{5} - 4\sqrt{5} + \sqrt{(5 \times 5 \times 5)} \\ &\Rightarrow 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 9\sqrt{5} - 4\sqrt{5} + \sqrt{(5 \times 5 \times 5)} \\ &\Rightarrow 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 9\sqrt{5} - 4\sqrt{5} + 5\sqrt{5} \\ &\Rightarrow 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = (9 - 4 + 5)\sqrt{5} \\ &\Rightarrow 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5} \\ &\text{iii. } 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 7\sqrt{(2 \times 2 \times 2 \times 2 \times 3)} - \sqrt{(3 \times 3 \times 3)} - \sqrt{3} \\ &\Rightarrow 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 7\sqrt{43} - 3\sqrt{3} - \sqrt{3} \\ &\Rightarrow 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 28\sqrt{3} - 3\sqrt{3} - \sqrt{3} \\ &\Rightarrow 7\sqrt{48} - \sqrt{27} - \sqrt{3} = (28 - 3 - 1)\sqrt{3} \\ &\Rightarrow 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 24\sqrt{3} \\ &\text{iv. } \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \left(1 - \frac{3}{5} + 2\right)\sqrt{7} \\ &\Rightarrow \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \left(\frac{5 - 3 + 10}{5}\right)\sqrt{7} \\ &\Rightarrow \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12}{5}\sqrt{7} \end{aligned}$$

Q. 7. Multiply and write the answer in the simplest form.

i. 3√12 × √18 ii. 3√12 × 7√15 iii. 3√8 × √5 iv. 5√8 × 2√8

Answer : i. $3\sqrt{12} \times \sqrt{18}$

$$3\sqrt{12} \times \sqrt{18} = 3\sqrt{(2 \times 2 \times 3)} \times \sqrt{(2 \times 3 \times 3)}$$

$$\Rightarrow 3\sqrt{12} \times \sqrt{18} = 3 \times 2\sqrt{3} \times 3\sqrt{2}$$

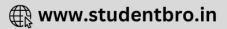
$$\Rightarrow 3\sqrt{12} \times \sqrt{18} = 6\sqrt{3} \times 3\sqrt{2}$$

$$\Rightarrow 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$$

ii. $3\sqrt{12} \times 7\sqrt{15}$
 $3\sqrt{12} \times 7\sqrt{15} = 3\sqrt{(2 \times 2 \times 3)} \times 7\sqrt{(3 \times 5)}$
 $\Rightarrow 3\sqrt{12} \times 7\sqrt{15} = 3 \times 2\sqrt{3} \times 7\sqrt{(3 \times 5)}$
 $\Rightarrow 3\sqrt{12} \times 7\sqrt{15} = 3 \times 2 \times 7 \times \sqrt{(3 \times 3 \times 5)}$
 $\Rightarrow 3\sqrt{12} \times 7\sqrt{15} = 3 \times 2 \times 7 \times 3\sqrt{5}$
 $\Rightarrow 3\sqrt{12} \times 7\sqrt{15} = 126\sqrt{5}$
iii. $3\sqrt{8} \times \sqrt{5}$
 $3\sqrt{8} \times \sqrt{5} = 3 \times 2\sqrt{2} \times \sqrt{5}$
 $\Rightarrow 3\sqrt{8} \times \sqrt{5} = 3 \times 2\sqrt{2} \times \sqrt{5}$
 $\Rightarrow 3\sqrt{8} \times \sqrt{5} = 3 \times 2\sqrt{2} \times \sqrt{5}$
 $\Rightarrow 3\sqrt{8} \times \sqrt{5} = 6\sqrt{10}$
iv. $5\sqrt{8} \times 2\sqrt{8} = 5\sqrt{(2 \times 2 \times 2)} \times 2\sqrt{(2 \times 2 \times 2)}$
 $\Rightarrow 5\sqrt{8} \times 2\sqrt{8} = 5 \times 2\sqrt{2} \times 2 \times 2\sqrt{2}$
 $\Rightarrow 5\sqrt{8} \times 2\sqrt{8} = 5 \times 2\sqrt{2} \times 2 \times 2\sqrt{2}$
 $\Rightarrow 5\sqrt{8} \times 2\sqrt{8} = 5 \times 2 \times 2 \times 2 \times 2\sqrt{2}$
 $\Rightarrow 5\sqrt{8} \times 2\sqrt{8} = 5 \times 2 \times 2 \times 2 \times 2\sqrt{2}$
 $\Rightarrow 5\sqrt{8} \times 2\sqrt{8} = 5 \times 2 \times 2 \times 2 \times 2$
 $\Rightarrow 5\sqrt{8} \times 2\sqrt{8} = 80$

Q. 8. Divide, and write the answer in simplest form.

i. √98 ÷ √2 ii. √125 ÷ √50



iii. √54 ÷ √27 iv. √310 ÷ √5 Answer: i. √98 ÷ √2 $\sqrt{98} \div \sqrt{2} = \sqrt{\frac{98}{2}}$ $\Rightarrow \sqrt{98} \div \sqrt{2} = \sqrt{49}$ $\Rightarrow \sqrt{98} \div \sqrt{2} = 7$ **ii.** √125 ÷ √50 $\sqrt{125} \div \sqrt{50} = \sqrt{\frac{125}{50}}$ $\Rightarrow \sqrt{125} \div \sqrt{50} = \sqrt{\frac{5 \times 5 \times 5}{5 \times 2 \times 5}}$ $\Rightarrow \sqrt{125} \div \sqrt{50} = \sqrt{\frac{5}{2}}$ iii. √54 ÷ √27 $\sqrt{54} \div \sqrt{27} = \sqrt{\frac{54}{27}}$ $\Rightarrow \sqrt{54} \div \sqrt{27} = \sqrt{2}$ **iv.** √310 ÷ √5 $\sqrt{310} \div \sqrt{5} = \sqrt{\frac{310}{5}}$

$$\Rightarrow \sqrt{310} \div \sqrt{5} = \sqrt{\frac{2 \times 5 \times 31}{5}}$$
$$\Rightarrow \sqrt{310} \div \sqrt{5} = \sqrt{62}$$

Q. 9. Rationalize the denominator.

i.
$$\frac{3}{\sqrt{5}}$$
 ii. $\frac{1}{\sqrt{14}}$
iii. $\frac{5}{\sqrt{7}}$ iv. $\frac{6}{9\sqrt{3}}$
v. $\frac{11}{\sqrt{3}}$

Answer : i. We know that $\sqrt{5} \times \sqrt{5} = 5$, \therefore to rationalize the denominator of $\sqrt{5}$ multiply both numerator and denominator by $\sqrt{5}$.

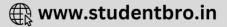
$$\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$$
$$\Rightarrow \frac{3}{\sqrt{5}} = \frac{3}{5}\sqrt{5}$$

ii. We know that $\sqrt{14} \times \sqrt{14} = 14$, \therefore to rationalize the denominator of $\sqrt{14}$ multiply both numerator and denominator by $\sqrt{14}$.

$$\frac{1}{\sqrt{14}} = \frac{1}{\sqrt{14}} \times \frac{\sqrt{14}}{\sqrt{14}} = \frac{\sqrt{14}}{14}$$
$$\Rightarrow \frac{1}{\sqrt{14}} = \frac{1}{14}\sqrt{14}$$

iii. We know that $\sqrt{7} \times \sqrt{7} = 7$, \therefore to rationalize the denominator of $\sqrt[5]{7}$ multiply both numerator and denominator by $\sqrt{7}$.

Get More Learning Materials Here : 🗾



1

$$\frac{5}{\sqrt{7}} = \frac{5}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{5\sqrt{7}}{7}$$
$$\Rightarrow \frac{5}{\sqrt{7}} = \frac{5}{7}\sqrt{7}$$

iv. We know that $\sqrt{3} \times \sqrt{3} = 3$, \therefore to rationalize the denominator of $\frac{6}{9\sqrt{3}}$ multiply both numerator and denominator by $\sqrt{3}$.

$$\frac{6}{9\sqrt{3}} = \frac{6}{9\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{6\sqrt{3}}{9\times 3} = \frac{2\sqrt{3}}{9}$$
$$\Rightarrow \frac{6}{9\sqrt{3}} = \frac{2}{9}\sqrt{3}$$

v. We know that $\sqrt{3} \times \sqrt{3} = 3$, \therefore to rationalize the denominator of $\frac{11}{\sqrt{3}}$ multiply both numerator and denominator by $\sqrt{3}$.

$$\frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{11\sqrt{3}}{3}$$
$$\Rightarrow \frac{11}{\sqrt{3}} = \frac{11}{3}\sqrt{3}$$

Practice set 2.4

CLICK HERE

≫

🕀 www.studentbro.in

Q. 1. Multiply

i. $\sqrt{3}(\sqrt{7} - \sqrt{3})$ ii. $(\sqrt{5} - \sqrt{7})\sqrt{2}$ iii. $(3\sqrt{2} - \sqrt{3})(4\sqrt{3} - \sqrt{2})$

Answer :

i. $\sqrt{3}(\sqrt{7} - \sqrt{3})$ = $\sqrt{3} \times \sqrt{7} - \sqrt{3} \times \sqrt{3}$ [$\because \sqrt{a}(\sqrt{b} - \sqrt{c}) = \sqrt{a} \times \sqrt{b} - \sqrt{a} \times \sqrt{c}$] = $\sqrt{21} - 3$

ii.
$$(\sqrt{5} - \sqrt{7})\sqrt{2}$$

 $=\sqrt{5} \times \sqrt{2} - \sqrt{7} \times \sqrt{2}$
 $[\because \sqrt{a}(\sqrt{b} - \sqrt{c}) = \sqrt{a} \times \sqrt{b} - \sqrt{a} \times \sqrt{c}]$
 $=\sqrt{10} - \sqrt{14}$
iii. $(3\sqrt{2} - \sqrt{3})(4\sqrt{3} - \sqrt{2})$
 $= 3\sqrt{2}(4\sqrt{3} - \sqrt{2}) - \sqrt{3}(4\sqrt{3} - \sqrt{2})$
 $= 3\sqrt{2} \times 4\sqrt{3} - 3\sqrt{2} \times \sqrt{2} - \sqrt{3} \times 4\sqrt{3} + \sqrt{3} \times \sqrt{2}$
 $[\because \sqrt{a}(\sqrt{b} - \sqrt{c}) = \sqrt{a} \times \sqrt{b} - \sqrt{a} \times \sqrt{c}]$
 $= 12\sqrt{6} - 3 \times 2 - 4 \times 3 + \sqrt{6}$
 $= 12\sqrt{6} - 6 - 12 + \sqrt{6}$
 $= 13\sqrt{6} - 18$

Q. 2. Rationalize the denominator.

i.
$$\frac{1}{\sqrt{7} + \sqrt{2}}$$
 ii. $\frac{3}{2\sqrt{5} - 3\sqrt{2}}$
iii. $\frac{4}{7 + 4\sqrt{3}}$ iv. $\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$

Answer : i. The rationalizing factor of $\sqrt{7} + \sqrt{2}$ is $\sqrt{7} - \sqrt{2}$. Therefore, multiply both numerator and denominator by $\sqrt{7} - \sqrt{2}$.

$$\frac{1}{\sqrt{7} + \sqrt{2}} = \frac{1}{\sqrt{7} + \sqrt{2}} \times \frac{\sqrt{7} - \sqrt{2}}{\sqrt{7} - \sqrt{2}}$$
$$\Rightarrow \frac{1}{\sqrt{7} + \sqrt{2}} = \frac{\sqrt{7} - \sqrt{2}}{(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})}$$
$$\Rightarrow \frac{1}{\sqrt{7} + \sqrt{2}} = \frac{\sqrt{7} - \sqrt{2}}{(\sqrt{7})^2 - (\sqrt{2})^2}$$

$$[\because (a-b)(a+b) = a^2 - b^2]$$
$$\Rightarrow \frac{1}{\sqrt{7} + \sqrt{2}} = \frac{\sqrt{7} - \sqrt{2}}{7 - 2}$$
$$\Rightarrow \frac{1}{\sqrt{7} + \sqrt{2}} = \frac{\sqrt{7} - \sqrt{2}}{5}$$

ii. The rationalizing factor of $2\sqrt{5} - 3\sqrt{2}$ is $2\sqrt{5} + 3\sqrt{2}$. Therefore, multiply both numerator and denominator by $2\sqrt{5} + 3\sqrt{2}$.

$$\frac{3}{2\sqrt{5} - 3\sqrt{2}} = \frac{3}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$$

$$\Rightarrow \frac{3}{2\sqrt{5} - 3\sqrt{2}} = \frac{3(2\sqrt{5} + 3\sqrt{2})}{(2\sqrt{5} - 3\sqrt{2})(2\sqrt{5} + 3\sqrt{2})}$$

$$\Rightarrow \frac{3}{2\sqrt{5} - 3\sqrt{2}} = \frac{6\sqrt{5} + 9\sqrt{2}}{(2\sqrt{5})^2 - (3\sqrt{2})^2}$$

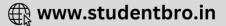
$$[\because (a-b)(a+b) = a^2 - b^2]$$

$$\Rightarrow \frac{3}{2\sqrt{5} - 3\sqrt{2}} = \frac{6\sqrt{5} + 9\sqrt{2}}{20 - 18}$$

$$\Rightarrow \frac{3}{2\sqrt{5} - 3\sqrt{2}} = \frac{6\sqrt{5} + 9\sqrt{2}}{2}$$

iii. The rationalizing factor of 7 + 4 $\sqrt{3}$ is 7 – 4 $\sqrt{3}$. Therefore, multiply both numerator and denominator by 7 – 4 $\sqrt{3}$.

$$\frac{4}{7+4\sqrt{3}} = \frac{4}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}$$
$$\Rightarrow \frac{4}{7+4\sqrt{3}} = \frac{4(7-4\sqrt{3})}{(7+4\sqrt{3})(7-4\sqrt{3})}$$
$$\Rightarrow \frac{4}{7+4\sqrt{3}} = \frac{28-16\sqrt{3}}{(7)^2-(4\sqrt{3})^2}$$



[∵ (a-b)(a+b) =
$$a^2 - b^2$$
]

$$\Rightarrow \frac{4}{7 + 4\sqrt{3}} = \frac{28 - 16\sqrt{3}}{49 - 48}$$

$$\Rightarrow \frac{4}{7 + 4\sqrt{3}} = 28 - 16\sqrt{3}$$

iv. The rationalizing factor of $\sqrt{5} + \sqrt{3}$ is $\sqrt{5} - \sqrt{3}$. Therefore, multiply both numerator and denominator by $\sqrt{5} - \sqrt{3}$.

$$\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \times \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$

$$\Rightarrow \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} - \sqrt{3})(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}$$

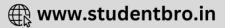
$$\Rightarrow \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} - \sqrt{3})^2}{(\sqrt{5})^2 - (\sqrt{3})^2}$$
[: (a-b)(a+b) = a² - b²]
$$\Rightarrow \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5})^2 + (\sqrt{3})^2 - 2(\sqrt{5})(\sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2}$$
[: (a-b)² = a² + b² - 2ab]
$$\Rightarrow \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{5 + 3 - 2\sqrt{15}}{5 - 3}$$

$$\Rightarrow \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{8 - 2\sqrt{15}}{2}$$

$$\Rightarrow \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{2[4 - \sqrt{15}]}{2}$$

$$\Rightarrow \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = 4 - \sqrt{15}$$

CLICK HERE



Practice set 2.5

Q. 1. Find the value.

(i) |15 - 2|

(ii) |4 - 9|

(iii) |7| × |-4|

Answer : Absolute value describes the distance of a number on the number line from 0 without considering which direction from zero the number lies. The absolute value of a number is never negative.

Therefore,

i. |15 - 2| = |13| = 13

ii. |4 - 9| = |-5| = 5

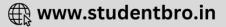
iii. |7| × |-4| = 7 × 4 = 28

Q. 2. Solve.

i.
$$|3x - 5| = 1$$

ii. $|7 - 2x| = 5$
iii. $\left|\frac{8 - x}{2}\right| = 5$
iv. $\left|5 + \frac{x}{4}\right| = 5$
Answer : i. $|3x - 5| = 1$

 $\Rightarrow 3x - 5 = 1 \text{ or } 3x - 5 = -1$ $\Rightarrow 3x = 1 + 5 \text{ or } 3x = -1 + 5$ $\Rightarrow 3x = 6 \text{ or } 3x = 4$ $\Rightarrow x = \frac{6}{3} \text{ or } x = \frac{4}{3}$



$$\Rightarrow x = 2 \text{ or } x = \frac{4}{3}$$

ii. $|7 - 2x| = 5$

$$\Rightarrow 7 - 2x = 5 \text{ or } 7 - 2x = -5$$

$$\Rightarrow 2x = 7 - 5 \text{ or } 2x = 7 + 5$$

$$\Rightarrow 2x = 2 \text{ or } 2x = 12$$

$$\Rightarrow x = 1 \text{ or } x = \frac{12}{2}$$

$$\Rightarrow x = 1 \text{ or } x = 6$$

iii. $\left|\frac{8-x}{2}\right| = 5$

$$\Rightarrow \frac{8-x}{2} = 5 \text{ or } \frac{8-x}{2} = -5$$

$$\Rightarrow 8 - x = 2 \times 5 \text{ or } 8 - x = 2 \times -5$$

$$\Rightarrow 8 - x = 10 \text{ or } 8 - x = -10$$

$$\Rightarrow x = 8 - 10 \text{ or } x = 8 + 10$$

$$\Rightarrow x = -2 \text{ or } x = 18$$

iv. $\left|5 + \frac{x}{4}\right| = 5$

$$\Rightarrow 5 + \frac{x}{4} = 5 \text{ or } 5 + \frac{x}{4} = -5$$

$$\Rightarrow \frac{20 + x}{4} = 5 \text{ or } 5 + \frac{x}{4} = -5$$

$$\Rightarrow 20 + x = 4 \times 5 \text{ or } 20 + x = 4 \times -5$$

$$\Rightarrow 20 + x = 20 \text{ or } 20 + x = -20$$

$$\Rightarrow x = 20 - 20 \text{ or } x = -20 - 20$$

 \Rightarrow x = 0 or x = -40

Problem set 2

Q. 1 A. Choose the correct alternative answer for the questions given below.

i. Which one of the following is an irrational number?

- A. √16/25 B. √5
- C. 3/9
- D. √196
- D. 196

Answer : An irrational number is a number that cannot be expressed as a fraction \P for any <u>integers</u> p and q and q $\neq 0$.

 $\sqrt{\frac{16}{25}} = \frac{4}{5}$ since it can be written as $\frac{p}{q}$, it is a rational number.

 $\frac{3}{9} = \frac{1}{3}$ since it can be written as $\frac{p}{q}$, it is a rational number.

 $\sqrt{196} = 14 = \frac{14}{1}$ since it can be written as $\frac{p}{q}$, it is a rational number.

Since $\sqrt{5}$ cannot be written as **q** it is an irrational number

Therefore $\sqrt{5}$ is an irrational number.

Q. 1 B. Which of the following is an irrational number?

A. 0.17

B. 1.513 C. 0.2746 D. 0.101001000....

Answer : An irrational number is a number that cannot be expressed as a fraction \mathbf{q} for any integers p and q and q $\neq 0$.

Get More Learning Materials Here :

р

р

$$0.17 = \frac{17}{100}$$

Since it can be written as q,

it is a rational number.

 $1.\overline{513}$ is a rational number because it is a non-terminating but repeating decimal.

 $0.27\overline{46}$ is a rational number because it is a non-terminating but repeating decimal.

0.101001000.... is an irrational number because it is a non-terminating and non-`repeating decimal.

Therefore, 0.101001000.... is an irrational number.

Q. 1 C. Decimal expansion of which of the following is non-terminating recurring?

A. 2/5 B. 3/16 C. 3/11 D. 137/25

Answer : A non-terminating recurring decimal representation means that the number will have an infinite number of digits to the right of the decimal point and those digits will repeat themselves.

$$\frac{2}{5} = 0.4$$

: it does not have an infinite number of digits to the right of the decimal point : it is not a non-terminating recurring decimal.

$$\frac{3}{16} = 0.1875$$

 \therefore it does not have an infinite number of digits to the right of the decimal point \therefore it is not a non-terminating recurring decimal.

$$\frac{3}{11} = 0.2727 \dots = 0.\overline{27}$$

 \therefore it has an infinite number of digits to the right of the decimal point which are repeating themselves \therefore it is a non-terminating recurring decimal.

CLICK HERE

🕀 www.studentbro.in

$$\frac{137}{25} = 5.48$$

: it does not have an infinite number of digits to the right of the decimal point : it is not a non-terminating recurring decimal.

Therefore, $\overline{11}$ is a non-terminating recurring decimal.

Q. 1 D. Every point on the number line represent, which of the following numbers?

A. Natural numbers

B. Irrational numbers

C. Rational numbers

D. Real numbers.

Answer : Every point of a number line is assumed to correspond to a real number, and every real number to a point. Therefore, Every point on the number line represent a real number.

Q. 1 E. The number 0.4 in p/q form is

- A. 4/9
- B. 40/9
- C. 3.6/9
- D. 36/9

Answer :

$$0.4 = \frac{4}{10}$$

: the denominator of all the above options is $9 \div$ we multiply both numerator and denominator by 0.9 as $10 \times 0.9 = 9$

$$\Rightarrow 0.4 = \frac{4 \times 0.9}{10 \times 0.9}$$
$$\Rightarrow 0.4 = \frac{3.6}{9}$$

Q. 1 F. What is \sqrt{n} , if n is not a perfect square number?

A. Natural number B. Rational number C. Irrational number D. Options A, B, C all are correct.

Answer : If n is not a perfect square number, then \sqrt{n} cannot be expressed as ratio of a and b where a and b are integers and b $\neq 0$

Therefore, \sqrt{n} is an Irrational number

Q. 1 G. Which of the following is not a surd?

A. √7 B. 3√17 C. 3√64 D. √193

Answer :

 $\sqrt[3]{64} = \sqrt[3]{4 \times 4 \times 4}$

 $\Rightarrow \sqrt[3]{64} = \sqrt[3]{4^3}$

 $\Rightarrow \sqrt[3]{64} = 4$

Which is a rational number

Therefore, $\sqrt[3]{64}$ is not a surd.

Q. 1 H. What is the order of the surd $\sqrt[3]{\sqrt{5}}$?

- A. 3 B. 2
- **C.** 6
- D. 5

Answer :

$$\sqrt[3]{\sqrt{5}} = \sqrt[3]{(5)^{\frac{1}{2}}}$$
$$\Rightarrow \sqrt[3]{\sqrt{5}} = \sqrt[3 \times 2]{5}$$

$$\Rightarrow \sqrt[3]{\sqrt{5}} = \sqrt[6]{5}$$

Therefore, the order of the surd $\sqrt[3]{\sqrt{5}}$ is 6.

Q. 1 I. Which one is the conjugate pair of $2\sqrt{5} + \sqrt{3}$?

A. $-2\sqrt{5} + \sqrt{3}$ B. $-2\sqrt{5} - \sqrt{3}$ C. $2\sqrt{3} + \sqrt{5}$ D. $\sqrt{3} + 2\sqrt{5}$

Answer : A math conjugate is formed by changing the sign between two terms in a binomial. For instance, the conjugate of x + y is x - y.

Now,

 $2\sqrt{5} + \sqrt{3} = \sqrt{3} + 2\sqrt{5}$

Its conjugate pair = $\sqrt{3} - 2\sqrt{5} = -2\sqrt{5} + \sqrt{3}$

- : The conjugate pair of $2\sqrt{5} + \sqrt{3} = -2\sqrt{5} + \sqrt{3}$
- Q. 1 J. The value of |12 (13 + 7) × 4| is

A. -68

- **B. 68**
- C. -32

D. 32

Answer : $|12 - (13 + 7) \times 4| = |12 - 20 \times 4|$ (Solving it according to BODMAS)

$$\Rightarrow |12 - (13 + 7) \times 4| = |12 - 80|$$

$$\Rightarrow |12 - (13 + 7) \times 4| = |-68|$$

 $\Rightarrow |12 - (13 + 7) \times 4| = 68$

Q. 2. Write the following numbers in p/q form.

i. 0.555 ii. 29.568 iii. 9.315 315 ... iv. 357.417417... v. 30.219

Answer : i.

$$0.555 = \frac{555}{1000}$$
$$\Rightarrow 0.555 = \frac{111}{200}$$

ii. Let

 $x = 29.\overline{568} = 29.568568...$

 \Rightarrow 1000x = 29568.568568.....

Now,

1000x - x = 29568.568568 - 29.568568 ⇒999x = 29539.0 ⇒ x = $\frac{29539}{999}$ ⇒ 29.568 = $\frac{29539}{999}$ iii. Let x = 9.315315...

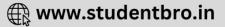
⇒ 1000x = 9315.315315.....

Now,

1000x - x = 9315.315315 - 9.315315

⇒999x = 9306.0

 $\Rightarrow x = \frac{9306}{999}$



$$\Rightarrow 9.315315 = \frac{29539}{999}$$

iv. Let x = 357.417417...
$$\Rightarrow 1000x = 357417.417417...$$
Now,
$$1000x - x = 357417.417417 - 357.417417$$
$$\Rightarrow 999x = 357060.0$$
$$\Rightarrow x = \frac{357060}{999}$$
$$\Rightarrow 357.417417... = \frac{357060}{999}$$
v. Let x = 30.219219....

Now,

⇒999x = 30189.0

$$\Rightarrow x = \frac{30189}{999}$$

$$\Rightarrow 30.\overline{219} = \frac{30189}{999}$$

Q. 3. Write the following numbers in its decimal form.

i5/7	ii. 9/11
iii. √ 5	iv. 121/13
v. 29/8	
Answer : i.	

$$\frac{-5}{7} = -0.714287142871428....$$

$$\Rightarrow \frac{-5}{7} = -0.71428$$
ii.
$$\frac{9}{11} = 0.818181...$$

$$\Rightarrow \frac{9}{11} = 0.818181...$$

$$\Rightarrow \frac{9}{11} = 0.\overline{81}$$
iii. $\sqrt{5} = 2.236067977...$
iv.
$$\frac{121}{13} = 9.307692307692307692...$$

$$\Rightarrow \frac{121}{13} = 9.\overline{307692}$$
v.
$$\frac{29}{8} = 3.625$$

Q. 4. Show that 5 + $\sqrt{7}$ is an irrational number.

Answer : Let us assume that $5 + \sqrt{7}$ is a rational number

$$\therefore 5 + \sqrt{7} = \frac{a}{b}$$

where, b≠0 and a, b are integers

 $\Rightarrow \sqrt{7} = \frac{a}{b} - 5$ $\Rightarrow \sqrt{7} = \frac{a - 5b}{b}$

 \therefore a, b are integers \therefore a – 5b and b are also integers

 $\Rightarrow \frac{a-5b}{b}$ is rational which cannot be possible $: \frac{a-5b}{b} = \sqrt{7}$ which is an irrational number

CLICK HERE

≫

🕀 www.studentbro.in

 \because it is contradicting our assumption \therefore the assumption was wrong

Hence, 5 + $\sqrt{7}$ is an irrational number

Q. 5. Write the following surds in simplest form.

i.
$$\frac{3}{4}\sqrt{8}$$
 ii. $-\frac{5}{9}\sqrt{45}$

Answer : i.

$$\frac{3}{4}\sqrt{8} = \frac{3}{4}\sqrt{2 \times 2 \times 2}$$
$$\Rightarrow \frac{3}{4}\sqrt{8} = \frac{3}{4} \times 2\sqrt{2}$$
$$\Rightarrow \frac{3}{4}\sqrt{8} = \frac{3}{2}\sqrt{2}$$

$$-\frac{5}{9}\sqrt{45} = -\frac{5}{9}\sqrt{3 \times 3 \times 5}$$
$$\Rightarrow -\frac{5}{9}\sqrt{45} = -\frac{5}{9} \times 3\sqrt{5}$$
$$\Rightarrow -\frac{5}{9}\sqrt{45} = -\frac{5}{3}\sqrt{5}$$

Q. 6. Write the simplest form of rationalizing factor for the given surds.

i. √32 ii. √50 iii. √27 iv. 3/5√10 v. 3√72 vi. 4√11

Answer : i. $\sqrt{32}$

$$\sqrt{32} = \sqrt{2 \times 2 \times 2 \times 2 \times 2}$$
$$\Rightarrow \sqrt{32} = 2 \times 2 \times \sqrt{2}$$

$$\Rightarrow \sqrt{32} = 4\sqrt{2}$$

 \therefore Its rationalizing factor = $\sqrt{2}$

ii. √50

$$\sqrt{50} = \sqrt{2 \times 5 \times 5}$$

$$\Rightarrow \sqrt{50} = 5\sqrt{2}$$

 \therefore Its rationalizing factor = $\sqrt{2}$

iii. √27

$$\sqrt{27} = \sqrt{3 \times 3 \times 3}$$

$$\Rightarrow \sqrt{27} = 3\sqrt{3}$$

 \therefore Its rationalizing factor = $\sqrt{3}$

iv.
$$\frac{3}{5}\sqrt{10}$$

:: $\sqrt{10}$ cannot be further simplified

 \therefore Its rationalizing factor = $\sqrt{10}$

v. 3√72

 $3\sqrt{72} = \sqrt{2 \times 2 \times 2 \times 3 \times 3}$

- $\Rightarrow 3\sqrt{72} = 2 \times 3 \times \sqrt{2}$
- $\Rightarrow 3\sqrt{72} = 6\sqrt{2}$
- \therefore Its rationalizing factor = $\sqrt{2}$

vi. 4√11

- :: $\sqrt{11}$ cannot be further simplified
- : Its rationalizing factor = $\sqrt{11}$

Q. 7. Simplify.

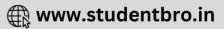
i.
$$\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75}$$

ii. $5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}}$
iii. $\sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}}$
iv. $4\sqrt{12} - \sqrt{75} - 7\sqrt{48}$
v. $2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}}$

Answer : i.

$$\begin{aligned} &\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75} \\ &= \frac{4}{7}\sqrt{3 \times 7 \times 7} + \frac{3}{8}\sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3} - \frac{1}{5}\sqrt{3 \times 5 \times 5} \\ &= \frac{4}{7} \times 7\sqrt{3} + \frac{3}{8} \times 2 \times 2 \times 2 \times \sqrt{3} - \frac{1}{5} \times 5\sqrt{3} \\ &= \frac{4}{7} \times 7\sqrt{3} + \frac{3}{8} \times 8\sqrt{3} - \frac{1}{5} \times 5\sqrt{3} \\ &= 4\sqrt{3} + 3\sqrt{3} - \sqrt{3} \\ &= 7\sqrt{3} - \sqrt{3} \\ &= 6\sqrt{3} \\ &\text{ii.} \\ &5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}} \\ &= 5\sqrt{3} + 2\sqrt{3 \times 3 \times 3} - \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \end{aligned}$$

Get More Learning Materials Here : 📕



$$= 5\sqrt{3} + 2 \times 3\sqrt{3} - \frac{\sqrt{3}}{3}$$
$$= \left(5 + 6 - \frac{1}{3}\right)\sqrt{3}$$
$$= \left(\frac{15 + 18 - 1}{3}\right)\sqrt{3}$$
$$= \frac{32}{3}\sqrt{3}$$

iii.

$$\begin{split} \sqrt{216} &- 5\sqrt{6} + 2\sqrt{294} - \frac{3}{\sqrt{6}} \\ &= \sqrt{6 \times 6 \times 6} - 5\sqrt{6} + 2\sqrt{2 \times 3 \times 7 \times 7} - \frac{3}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \\ &= 6\sqrt{6} - 5\sqrt{6} + 2 \times 7\sqrt{6} - \frac{3\sqrt{6}}{6} \\ &= 6\sqrt{6} - 5\sqrt{6} + 14\sqrt{6} - \frac{\sqrt{6}}{2} \\ &= \left(6 - 5 + 14 - \frac{1}{2}\right)\sqrt{6} \\ &= \left(\frac{12 - 10 + 28 - 1}{2}\right)\sqrt{6} \\ &= \frac{29}{2}\sqrt{3} \\ &\text{iv.} \\ &4\sqrt{12} - \sqrt{75} - 7\sqrt{48} \\ &= 4\sqrt{2 \times 2 \times 3} - \sqrt{3 \times 5 \times 5} - 7\sqrt{2 \times 2 \times 2 \times 2 \times 3} \end{split}$$

$$= 4 \times 2\sqrt{3} - 5\sqrt{3} - 7 \times 4\sqrt{3}$$

$$= 8\sqrt{3} - 5\sqrt{3} - 28\sqrt{3}$$

$$= (8 - 5 - 28)\sqrt{3}$$

$$= -25\sqrt{3}$$

v.

$$2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}}$$

$$= 2\sqrt{2 \times 2 \times 2 \times 2 \times 3} - \sqrt{3 \times 5 \times 5} - \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= 2 \times 4\sqrt{3} - 5\sqrt{3} - \frac{\sqrt{3}}{3}$$

$$= 8\sqrt{3} - 5\sqrt{3} - \frac{\sqrt{3}}{3}$$

$$= (8 - 5 - \frac{1}{3})\sqrt{3}$$

$$= \left(\frac{24 - 15 - 1}{3}\right)\sqrt{3}$$

$$=\frac{8}{3}\sqrt{3}$$

Q. 8. Rationalize the denominator.

i.
$$\frac{1}{\sqrt{5}}$$
 ii. $\frac{2}{3\sqrt{7}}$
iii. $\frac{1}{\sqrt{3} - \sqrt{2}}$ iv. $\frac{1}{3\sqrt{5} + 2\sqrt{2}}$
v. $\frac{12}{4\sqrt{3} - \sqrt{2}}$

Answer : i.

$$\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$
$$\Rightarrow \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$
$$\Rightarrow \frac{1}{\sqrt{5}} = \frac{1}{5}\sqrt{5}$$

$$\frac{2}{3\sqrt{7}} = \frac{2}{3\sqrt{7}} \times \frac{3\sqrt{7}}{3\sqrt{7}}$$
$$\Rightarrow \frac{2}{3\sqrt{7}} = \frac{6\sqrt{7}}{(3\sqrt{7})^2}$$
$$\Rightarrow \frac{2}{3\sqrt{7}} = \frac{6\sqrt{7}}{63}$$
$$\Rightarrow \frac{2}{3\sqrt{7}} = \frac{6}{63}\sqrt{7}$$
$$\Rightarrow \frac{2}{3\sqrt{7}} = \frac{2}{21}\sqrt{7}$$

iii.

$$\frac{1}{\sqrt{3} - \sqrt{2}} = \frac{1}{\sqrt{3} - \sqrt{2}} \times \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
$$\Rightarrow \frac{1}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}$$
$$\Rightarrow \frac{1}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2}$$
$$\Rightarrow \frac{1}{\sqrt{3} - \sqrt{2}} = \sqrt{3} + \sqrt{2}$$

iv.

$$\frac{1}{3\sqrt{5}+2\sqrt{2}} = \frac{1}{3\sqrt{5}+2\sqrt{2}} \times \frac{3\sqrt{5}-2\sqrt{2}}{3\sqrt{5}-2\sqrt{2}}$$
$$\Rightarrow \frac{1}{3\sqrt{5}+2\sqrt{2}} = \frac{3\sqrt{5}-2\sqrt{2}}{(3\sqrt{5})^2-(2\sqrt{2})^2}$$
$$\Rightarrow \frac{1}{3\sqrt{5}+2\sqrt{2}} = \frac{3\sqrt{5}-2\sqrt{2}}{45-8}$$
$$\Rightarrow \frac{1}{3\sqrt{5}+2\sqrt{2}} = \frac{3\sqrt{5}-2\sqrt{2}}{37}$$
v.

